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Abstract

Digital signatures are used to guarantee the integrity of data. In this work we are con-
cerned with homomorphic signatures over lattice spaces. There has been increasing in-
terest in lattices for cryptographic applications as they seem to be quantum-resistant
and efficient in terms of computation. Homomorphic schemes, on their part, are drawing
more and more interest as they allow to perform computations on encrypted or signed
data, thus being very suitable for cloud applications.

With a homomorphic signature scheme, it is possible to delegate the computation of
a given function to an untrusted third party. The third party not only produces the
requested result, but attaches to it a signature (that depends both on the data set and
the function to be computed). Then, the scheme provides the ability to verify whether
the provided result is really correct, or whether the third party cheated.

We first summarize the theory of lattices and its hard problems, and present trapdoor
functions that allow to use them for cryptography. Then, we illustrate a homomorphic
signature scheme for single bits over the integer-modulo lattices. We finally show how to
port this scheme over polynomial rings, with the aim of improving its performance and
achieving more functionality. In the end, we discuss some possible further improvements
to the scheme by relaxing its guarantee of correctness requirement to a probabilistic-
correctness.



Contents

Introduction 6

Chapter 1 Lattices 9

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Hard problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 The Shortest Vector Problem . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Approximate problems . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 The Bounded Distance Decoding Problem . . . . . . . . . . . . . 15

1.3.4 Obtaining a good basis from a random one . . . . . . . . . . . . . 20

1.4 An example scheme: NTRUEncrypt . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Key generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.3 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Modern hard problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 The Short Integer Solution Problem . . . . . . . . . . . . . . . . . 22

1.5.2 The Learning With Errors Problem . . . . . . . . . . . . . . . . . 25

Chapter 2 Trapdoor Functions on Lattices 27

2.1 Trapdoor for Learning With Errors . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 G-trapdoors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Trapdoor for Short Integer Solution . . . . . . . . . . . . . . . . . . . . . 30

2.3 Primitive matrices and inverting hG . . . . . . . . . . . . . . . . . . . . . 30

2.4 On the practical construction of trapdoors . . . . . . . . . . . . . . . . . 33

2.5 Trapdoor functions on polynomial rings . . . . . . . . . . . . . . . . . . . 34

4



Chapter 3 Homomorphic Signatures 36

3.1 The scheme on integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Statistical indistinguishability . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Homomorphic operations . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 A note on the hopes for Fully Homomorphic Signatures . . . . . . . . . . 41

3.3 The scheme on polynomial rings . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Homomorphic operations . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Improvements over the original scheme . . . . . . . . . . . . . . . 44

Chapter 4 Conclusions 46

Appendix: Mathematical references 47

Bibliography 48

5



Introduction

Imagine to own a huge data set, on which you would like to perform some computation.
It could be any operation: either searching through it, or performing some mathematical
task like an average, for example. Moreover, assume that the computation is very heavy,
and resources more powerful than your computer are needed. You thus decide to hand
the data over to some cloud provider that will make such a computation for you.

However, you have a very basic requirement: you do not want the third party to cheat on
you. That is, you want to be able to verify that the final result is correct. In other words,
you want to be sure that whatever result the cloud provider claims to be correct, it really
is. The third party must not purposefully try to deceive you with wrong information, nor
to save computing resources by just guessing or approximating the result.

Put in another way, as illustrated in Figure 1, how can we delegate the computation to a
third party, being sure that it does not cheat on the result?

Figure 1: Motivation for homomorphic signatures applied to cloud computation.

Homomorphic signatures allow to achieve this goal. The idea is that every entry in the
data set will also carry a corresponding signature, computed by the data owner. The
third party then not only produces the result of the computation, but attaches to it
the result of “corresponding” computations on the original signatures. The party who
requested the computation can then verify that the result is correct by checking that the
attached signature matches its expectations.
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This primitive is called homomorphic signature because it allows:

• to verify that something is what it claims to be (signature);

• to perform operations on the signed data and manipulate the data signatures ac-
cordingly (homomorphic).

Figure 2: With homomorphic en-
cryption schemes, a user makes a
query on the encrypted data stored
in the cloud, and obtains a cipher-
text (opaque to the server) with the
result.

Notice how the data is never needed for verifica-
tion: in fact, everybody can verify the correctness
of the computation given the result, its signature
and the signatures for the original data. In other
words, to verify the result, we do not need to know
the data it originated from - only the relative sig-
natures are needed.

We will not deal with it much in this work, but it
is worth mentioning the existance of homomorphic
encryption as well (see Gentry’s work [Gen09]), as
showcased in Figure 2. These schemes allow queries
to be made on the ciphertexts. In fact, they allow
to manipulate the encrypted data in such a way
that, when decrypted, it will yield the expected
cleartext data, with the desired operations applied
to it.

As it happens for traditional schemes, encryption
and signatures schemes are complementary, and
are both needed to guarantee security, so the use
of one does not exclude the other. In fact, while
encryption provides confidentiality, signatures are
a means of checking data integrity.

These modern schemes have been developed on lat-
tice spaces, and rely on the their hard problems
and apt trapdoor functions. Lattice cryptography
is becoming more and more popular because of both its simplicity and its supposed
strength to quantum computers. In fact, there are no known quantum algorithms that
would make lattice hard problems easier, while Shor’s algorithm [Sho82] would make
RSA (and all schemes that rely on the integer factorization problem) incredibly weak in
a quantum world.

Current issues and further research

Homomorphic schemes are quite recent. For this reason, there is still a lot of work to
make them efficient and strong enough to be used in real life scenarios and mainstream
applications.
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Here we briefly list the main issues currently affecting the homomorphic signature scheme
[GVW15], which is the main object of this thesis. We will go in more detail in later
sections.

1. The number of operations allowed on signed data is limited. This means that it
is not possible to perform any computation on any data set. If a given bound on
the noise generated by the operations is exceeded, then the signature is basically
invalidated. This is what we refer to as leveled homomorphic signatures.

2. The time needed to verify a signature is comparable to the time needed to perform
the computation itself. That is, up to now there is no real advantage in delegating
the computation versus performing it, other than not having to retain the data set
long-term.

3. It is only possible to sign one bit at a time, and the whole scheme works on bits only.
This is clearly inconvenient for huge data sets, making it impractical for real-world
applications.

4. The signature size is significant. In current schemes, the signature for one single
bit is a matrix in the space Zn×mq ; thus significantly disproportionate.

Tackling all these problems are further research topics.

In our work, we tried to improve on points three and four, by moving from the ring Zq of
integers modulo q to the quotient ring of polynomials Zq[X]/(Xd− 1). We also provided
some hints to achieve possible improvements on point two, by relaxing the requirement of
correctness of the result to a probabilistic correctness. The discussion on the differences
between the schemes on the two rings can be found in Section 3.3.2, while the ideas about
probabilistic correctness are detailed in Section 3.2.

As for the structure of this work, in Chapter 1 we present lattice spaces, on which the
signature scheme is based, and illustrate hard problems defined on them. In Chapter
2, we define lattice trapdoor functions, that allow exploiting lattice hard problems for
cryptographic applications. Finally, in Chapter 3, we present the homomorphic signature
scheme [GVW15] and its extension to polynomial rings, discussing the differences between
the two instantiations.
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Chapter 1

Lattices

The interest in lattices for cryptographic applications has risen in the last few years. This
is due to several reasons.

First, as we will shortly explore in more detail, lattices are basically the discrete counter-
part of vector spaces. Cryptography has always been based on discrete spaces, and this
provides an apt setting. In fact, some problems that may be easy in continuous settings
become excruciatingly difficult (if not impossible) in the discrete counterpart.

For example, there are computationally efficient ways to calculate the logarithm in R, but
there are no known ways to do the same in discrete groups. It simply does not seem to be
possible to port the algorithm from the continuous to the discrete. Integer programming
is another instance of a problem that is significantly easier in the continuous setting. In
our case, the Gram-Schmidt algorithm [Wik19a] allows to obtain an orthonormal basis
from an arbitrary one of Rn, but the same algorithm does not work in Zn, and there does
not seem to be an efficient alternative.

Second, quantum computation does not seem to help in solving hard problems on lattices
more efficiently. In other words, lattice cryptography appears to be quantum-resistant.
In fact, while there are quantum algorithms (Shor’s algorithm [Sho82]) that would make
RSA weaker, for example, there is nothing similar for hard problems over lattices. For
this reason, lattice cryptography belongs to the post-quantum cryptography field, since
its schemes may become very useful in a possible quantum-future. In fact, although they
are inherently classic, and do not require anything more than a current PC to run, they
may withstand the quantum revolution.

What makes schemes over lattices particularly promising, with respect to other post-
quantum schemes, is that other schemes often require something more than what our
current technology supports. For example, photon-based cryptography [NC10, chap-
ter 12.6] requires a photon polarizer.

In addition, the basic structure of the schemes on lattices is simple and efficient, only
involving linear operations that can be highly parallelized to achieve better performance.

Finally, lattices have been shown to support homomorphic schemes, both for signatures
and for encryption purposes. In fact, the first ever homomorphic encryption scheme
was devised in 2008 by Gentry and is based on lattices [Gen09]. This was a major
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breakthrough and solved what has been regarded as a holy grail of cryptography for a
long time.

Homomorphic schemes are becoming more and more important as the need for privacy
and the use of cloud computation increases, as they allow to perform some computation
on the encrypted/signed data. For cipher-schemes, a cloud provider can be instructed to
perform some actions on the data without knowing what data it is manipulating, but still
producing a final (encrypted) result that, when decrypted with the secret key, will yield
the correct result! Something similar happens for signature schemes, where the signatures
on the initial data set are manipulated to produce a final signature on the result that
guarantees that such a result is correct.

Of course, there are downsides. The main disadvantage of current lattice schemes is
that, however fertile the field may seem, they are still a long way from having practical
implementations. In fact, from both storage and computational perspectives, they are
not efficient enough. At any rate, apart from some exceptions like NTRUEncrypt (see
Section 1.4), there is still a good amount of work to be done before these schemes become
ready for mainstream applications.

1.1 Notation

We will use a bold font for vectors v, while ordinary letters will be used lowercase z for
scalars and uppercase A for matrices (with the identity matrix of size n denoted as In).
B−t corresponds to the transposed of the inverse of B.

Also, we will denote with poly(n) a function that is polynomial in n, and with ||U ||∞ the
norm infinity of a matrix, corresponding to its maximum entry. If not specified otherwise,
|| · || denotes the norm 2.

For more mathematical background, see the Appendix.

1.2 Basic definitions

Figure 1.1: A 2D
lattice.

Before stating the formal definition of a lattice, let us give a more
informal intuition. In its simplest terms, a lattice is a grid of
points, as showcased in Figure 1.1. Lattices are the discrete coun-
terparts of vector spaces, with which they share many similarities.
Since all lattices are isomorphic to the additive group Zn, one can
think of a lattice as a multi-dimensional cartesian space made of
integer-coordinate points only.

Definition 1.2.1 (Lattice). Given a group G, a lattice L is a
discrete subgroup of G, where discrete means that for any v ∈ L,
it exists a neighborhood U of v, with U ⊂ G, such that U ∩L = v.

For most of our work, we will consider the case G = (Rn,+). In
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this context, a lattice is a subset of points of Rn that have some regular spacing between
them. Notice that the spacing can be different for each dimension: for example, in two
dimensions, the horizontal and vertical spacing sizes can differ.

Another useful way of thinking about a lattice is as a regular tiling of the space Rn. The
tiles are also called fundamental domains of the lattice. Thinking in two dimensions, a
lattice consists of a tiling with parallelograms (of any size, but always the same, of course;
see Figure 1.2). In higher dimensions, a lattice can be thought of as dividing the space
into equal polyedra (i.e. a n-dimensional parallelepiped).

Example 1.2.1. The most intuitive lattice is Zn, which perfectly fits with the grid
representation. Any other lattice (as long as it is a subgroup of Rn) can be obtained from
Zn through a linear transformation.

Moreover, given any lattice L, another one can easily be built by scaling it of a real factor
c, obtaining the lattice cL. This corresponds to uniformly stretching the lattice in all
dimensions.

Lattice basis

Figure 1.2: An example tiling for
a 2D lattice. Black dots are the
lattice points, while grey paral-
lelepipeds are lattice fundamental
domains.

Up to now we have given several interpretations
of a lattice, but they do not tell much about the
process that can be used to build one. Indeed,
one can define a lattice from any basis of Rn, in a
similar way as it is done for a vector space.

Definition 1.2.2 (Lattice basis). Given a set
of independent vectors B = {b1, ...,bn} ⊂ Rn, the
lattice generated by them is

L(B) = {
n∑
i=1

zibi, zi ∈ Z}

Notice how the coefficients of the linear combina-
tion are integers, while the basis vectors can have
non-integer components: this means that the lat-
tice points can have non-integer coordinates.

Example 1.2.2. L(1) = Z, and L((1, 0), (0, 1)) = Z2.

However, notice how L((1
2
, 0), (0, 3

4
)) is not Z2, but only homomorphic to it. We can find

a bijection between the two, but in the former there are lattice points with non integer
coordinates.

A lattice can be generated by several different bases (the number of which grows expo-
nentially in the lattice dimension). In particular, given a basis B, any unimodular matrix
U ∈ Zn×n allows to generate a different basis B′ = BU for the same lattice. However,
there is something that does not change across bases. That is, the absolute value of the
determinant of the basis vectors bi is constant. In fact, if the basis vectors are arranged
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in a matrix B, its determinant is invariant with respect to different basis for a given
lattice.

Proposition 1.2.1 (Relation between bases). There exists a unimodular transfor-
mation that links two different bases of the same lattice.

Formally, given an n-dimensional lattice L, if B and B′ are both bases of L, then there
exists an integer matrix U ∈ Zn×n such that B = B′U and det(U) = ±1.

Remark 1.2.1. Although several bases exist for the same lattice, not all of them are
equal applications-wise. In fact, when dealing with cryptographic matters, we make a
distinction between “good” and “bad” bases. We defer a more detailed treatment of the
differences to Section 1.3.3.

Remark 1.2.2. L(b1, . . . ,bn) is always a subgroup of Rn, but it is not necessarily dis-
crete. For example, L(1,

√
2) is not discrete. It can be shown that a basis generates a

discrete subgroup if the generators are all independent with each other [Unk11].

Finally, it will be useful, later on in our discussion, the definition of the parallelepiped
of a given basis. Intuitively, it corresponds to building a parallelepiped centered at the
origin, with side lengths equal to half of the basis vectors.

Definition 1.2.3. The origin-centered parallelepiped of a basis V is defined as:

P1/2(V ) = V ·
[
−1

2
,
1

2

)n

Minimum distances

Finally, it is useful to define the vector of minimum distance of a lattice. That corresponds
to the shortest non-zero vector belonging to the lattice.

Definition 1.2.4 (Minimum distance). The minimum distance of a lattice L is

λ1(L) = min
v∈L,v 6=0

||v||

It is possible to provide a bound on λ1(L), although not particularly helpful in practice.

Theorem 1.2.1 (Minkowski’s First Theorem). For any full-rank lattice L of rank
n,

λ1(L) ≤
√
n(det(L))

1
n

Notice how the vector having length λ1(L) is (always) not unique. In fact, since L is a
subgroup, if v is a vector of minimum distance, then −v is as well, and belongs to L.
In other words, there are always at least two elements having length λ1(L). However,
since for practical applications the exact element of length λ1(L) that is used is rarely
important, we often refer to the vector of minimum distance λ1(L) as one (any) of the
possible ones.

It is also possible to define the i-th successive minimum λi(L). Intuitively, it captures the
idea of how far we need to look in order to obtain a space of dimension i. More formally,
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Definition 1.2.5 (i-th successive minimum). λi(L) = min r such that L has i linearly
independent vectors of norm at most r. In other words, λi(L) is the radius of the smallest
sphere containing i linearly independent non-null lattice points.

A comprehensive survey on lattices and their foundations for cryptographic schemes can
be found in [Pei16].

1.3 Hard problems

Lattices are interesting for cryptography applications because of the hard problems that
can be defined on them. These are problems that are believed to be computationally hard
to solve, and can be used to build encryption and signature schemes.

1.3.1 The Shortest Vector Problem

The fundamental hard problem is finding a vector of minimum distance. Together with
its variants, it is the foundation for the more modern hard problem Short Integer Solution
described in Section 1.5.1.

Definition 1.3.1 (Shortest Vector Problem (SVP)). Given an arbitrary basis B of
L, find an element v ∈ L such that v = λ1(L).

We stress the fact that the problem relies on an arbitrary basis. In fact, there are bases
for which solving the problem may be easy, as long as one knows that the basis they have
is optimal. In general, however, this is a hard problem.

Figure 1.3: An example instance of the
Shortest Vector Problem, with the solu-
tion having length d. [LM18]

Intuitively, solving the Shortest Vector Prob-
lem for a given lattice corresponds to finding
the minimum distance between any two lattice
vectors, as illustrated in Figure 1.3. Thinking
of a lattice as a grid, we are looking for the
smallest step size.

Remark 1.3.1. One may wonder whether the
problem is well-posed at all, i.e. whether it al-
ways admits a solution. The answer is yes.
We skip the proof, which can be found in
[Unk11].

Example 1.3.1. Suppose to have the lattice
generated by B = {(1, 0), (0, 1)}, which is ba-
sically equal to Z2. Imagine to be looking for
its minimum distance. If we are the authors of the problem, and we have the basis B,
then we immediately know that there cannot be any vector with || · || ≤ 1, with the
exception of the zero vector. So with this basis, solving the Shortest Vector Problem is
straightforward: both basis vectors are already solutions!
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However, several bases exist for this lattice. For example, another is B′ = {(9, 4), (11, 5)},
which makes a unimodular matrix. With this basis there does not seem to be any quick
way to find a Shortest Vector. If we knew that the solution is (1, 0), then we could simply
solve the linear system {

1 = 9j + 11l

0 = 4j + 5l

and discover the exact combination of the basis vectors that yield the solution (in this
case, l = −4 and j = 5).

But suppose we were challenged to solve this problem given the B′ basis as only informa-
tion (i.e. no solution and no basis B). What we would have to find is some combination of
the basis vectors that yields shortest size. That is, finding apt y, z (with the point (y, z)
belonging to the lattice) such that, for some j, l ∈ Z, they are solution of the following
linear system: {

y = 9j + 11l

z = 4j + 5l

where having shortest size means that ||(y, z)|| is the smallest (nonzero) we can find in
the whole lattice.

This is an under-determined system of equations: it has four unknowns, but only two
equations. Usually, these kind of systems have infinite solutions. However, constraints on
the solution have an impact in this case, and the solution space is actually finite (although
it may be big if the lattice dimension is such).

Finally, notice how j and l do not have any bounds: they can be arbitrarily big. We
will come back to this remark later, when talking about the Bounded Distance Decoding
problem in Section 1.3.3; anyway, at least intuitively, we already see that from a cryp-
tographic prospective, not all bases are equal. In fact, some of them may allow for fast
solution of some problem, while some others may make it almost impossible.

1.3.2 Approximate problems

The Shortest Vector Problem is the ancestor of all other hard problems. All other hard
problems, in a way or another, require solution of this one. That is, other hard problems
exist whose hardness is based on the SVP.

Definition 1.3.2 (Approximate Shortest Vector Problem (SVPγ)). Given an
arbitrary basis B of an n-dimensional lattice L, find a v ∈ L such that v ≤ γ λ1(L).

The approximate problem is particularly useful in cryptographic applications, in which
the parameter γ is usually a function of the lattice dimension n. This ensures that γ is
not fixed and changes according to the security parameter of the setting.

There is also a decisional variant of the Approximate Shortest Vector Problem, in which
we are asked to provide a guess about the size of the shortest vector of L.

Definition 1.3.3 (Decisional Approximate Shortest Vector Problem (Gap-SVPγ)).
Given an arbitrary basis B of an n-dimensional lattice L and knowing that λ1(L) ≤ 1 or
λ1(L) > γ(n), decide which is the case.
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The decisional version is particularly important because several cryptosystems rely on it
for security, while a proof based on its search counterpart has not been devised yet.

1.3.3 The Bounded Distance Decoding Problem

The Bounded Distance Decoding problem is the last fundamental hard problem on lattices
that we cover, and possibly the most elaborate. It is also the most recurrent when it comes
to cryptographic applications, and the basis for the more modern hard problem Learning
With Errors described in Section 1.5.2.

In this problem, we are given a lattice basis and a challenge point x in space (that does
not necessarily belong to the lattice). The problem is to determine the lattice point to
which x is closest to. An example instance in shown in Figure 1.4.

Definition 1.3.4 (Bounded Distance Decoding Problem (BDD(L,x))). Given an
arbitrary basis B of an n-dimensional lattice L and a challenge point x ∈ Rn, with the
guarantee that it exists a unique vector v ∈ L s.t. ||x,v|| ≤ d = λ1(L)

2
, find v.

Figure 1.4: Example instance of the
Bounded Distance Decoding Problem.
The red point is the challenge point, the
solution is marked in green. [LM18]

Notice that bounding d as above is necessary
to guarantee the uniqueness of the solution. If
one imagines to be standing on v (the prob-
lem solution), the target points that can be

uniquely linked to it are within λ1(L)
2

distance.
Anything farther than that could be closer to
a different lattice point.

Another way of seeing the problem is that of a
decoding problem, as the name suggests. With
this interpretation, we imagine to have a lat-
tice point v and perturb it with some small
noise e. Given the sum v + e /∈ L, we are re-
quired to read through the noise and recover
the original lattice point. As we will shortly
see, different bases can have a different impact
on the ease of solution.

1.3.3.1 What makes the Bounded Distance Decoding Problem difficult?

As the literature goes, the Bounded Distance Decoding Problem is hard in general, but
easy if the basis is nice enough. In the case of encryption, for example, the idea is that we
can encode the secret message as a lattice point, and then add to it some small noise (i.e.
a small element e ∈ Rn). This generates an instance of the BDD problem, and then the
decoding can only be done by someone who holds the good basis for the lattice. Instead,
the parties who have a bad basis are going to have a hard time decrypting the ciphertext.

Since the Bounded Distance Decoding Problem is vital to several homomorphic encryption
and signatures schemes, it is worth spending some time to fully understand it. Of course,
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no proof of hardness can be given, as this is a problem that is only believed to be hard,
but we would like to at least get an idea of what makes it hard.

Solving the BDD Problem using a good basis

It is very tricky to define what a “good basis” is. The reason is that, generally, good is
only defined with respect to bad. In definition 1.3.6 we will get to our final definition of
what a “good basis” is, but that is only the landmark of our route. We will get there
eventually, but first let us give a poorer (although not necessarily easier) definition of
what a “good” lattice basis is.

Definition 1.3.5 (Good basis, temporary). A basis B for a lattice L is good if it is
made of orthogonal and short vectors.

What short vectors means is pretty vague. Usually, in cryptographic applications, a
lattice is generated from a (good) basis. Its vectors are considered to be short if they are
significantly shorter than vectors of any other basis.

Before considering a general example, let us consider a more specific (although tighter)
case. Consider a base in which each of its bi is of the form (0, ..., 0, ki, 0, ..., 0), where
ki ∈ R is in position i. In other words, we are considering the canonical basis of Rn, in
which each vector has been re-scaled by an independent real factor.

Example 1.3.2. Consider R2, with the lattice L generated by b0 = (1
2
, 0),b1 = (0, 5

4
) as

basis vectors.

Figure 1.5: The Bounded Distance De-
coding Problem instance with a good
basis (in red). The challenge point is in
green. Grid represents lattice points.

Suppose to be given x = (3
7
, 9

10
) as the

Bounded Distance Decoding challenge point.
It does not belong to L, but it is only ( 1

14
, 9

25
)

away from the point (1
2
, 5

4
), which does belong

to the lattice. Figure 1.5 shows the settings.

Let us now formalize the problem to be solved:
we are looking for the lattice point closest to
x. So, sitting on x, we are looking for the
linear combination with integer coefficients of
the basis vectors that is closest to us. Break-
ing it component-wise, we are looking for
min y, z ∈ R and generic k, j ∈ Z such that
they are solution of the following linear sys-
tem:

{
3
7

+ y = 1
2
k

9
10

+ z = 5
4
j

This may look like a difficult optimization problem, but it is not! In fact, each of these
equations is independent, so they can be solved one by one. The individual minimum
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problems are easy and can be solved quickly, as they are convex. Also, notice how useful
and important it is the guarantee that the solution is close to x: this ensures that k, j
will probably be quite small integers, making the algorithm converge very quickly.

As a side remark, notice that it would also be possible to put boundaries on y, z with
respect to the size of the basis vectors. However, all that we care about is that there is
a polynomial algorithm that allows to get to the solution.

Thus, what we obtain is that the overall complexity of solving a Bounded Distance De-
coding Problem instance with a good basis is Θ(Θ(min) · n).

Solving the BDD problem using a bad basis

A “bad”’ basis is any basis that does not satisfy any of the two conditions of a good
basis: it may be poorly orthogonal, or may be made of long vectors. We will later try to
understand what roles these differences play in solving the problem: for now, let us just
consider an example again.

Example 1.3.3. Another basis for the lattice generated by the good basis in Example
1.3.2 is b0 = (9

2
, 5

4
),b1 = (5, 10

4
). This is a bad one: vectors are non-orthogonal and quite

longer than the nice ones. Refer to Figure 1.6 for a graphical illustration of the setup.

Figure 1.6: The Bounded Distance Decoding
Problem instance with a bad basis (in blue,
shadow of good basis in red). Challenge point
in green. Grid represents lattice points.

Let us write down the system of
equations coordinate-wise as we did
for the good basis.

We are looking for min y, z ∈ R and
k, j ∈ Z such that they are solution
of:

{
3
7

+ y = 9
2
k + 5j

9
10

+ z = 5
4
k + 10

4
j

This may look similar as the previ-
ous example, but this time it really
is a system, meaning that the equa-
tions are no longer independent. In
fact, k and j show up in both equa-
tions. Thus, the equations cannot
be solved separately.

Moreover, we have 4 unknowns and
2 equations. This means that the
system is under-determined: in principle, there are infinite solutions. However, we cannot
just pick one of the infinite solutions at random: we are trying to find a solution that is
constrained to be minimum.

Especially with big n, solving this optimization problem can definitely be non-trivial!

17



On the differences between good and bad bases

Previous examples (1.3.2, 1.3.3) have shed some light on what distinguishes a good basis
from a bad one, when it comes to solving the Bounded Distance Decoding Problem. How-
ever, we have not really understood how the basis properties influence ease or hardness
of solution. This is what this final Section is going to tackle.

In Example 1.3.2 we required the lattice basis to satisfy the condition of being a “stretched”
version of the canonical one - i.e. that each vector had only one non-zero entry. This
requirement is at the root of the independence of the minimum problems, which in turn
allows for easy resolution of the Bounded Distance Decoding Problem. Of course, this con-
dition is stronger than simple orthogonality, but we will shortly explain how orthogonality
is there to achieve this very same goal as well.

Remark 1.3.2. Notice how the behavior above would present itself even with the canonical
basis, without any re-scaling of the vectors. In other words, using the canonical basis is
enough to obtain a set of independent minimum problems that can be solved efficiently.

However, it is known that when dealing with cryptography matters key re-usage or de-
terminism is insecure. When cryptography is made over lattices, this means we cannot
always use the same basis: some randomness is required. We may re-use the same lattice,
but not the same basis. Using a set of independent vectors, each having only one non-zero
coordinate achieves both: makes the problem easy and avoids re-usage of the key.

The second requirement we asked for is vector shortness. This does not give an immediate
advantage to the party holding the good basis, and is a subtler point to understand. Its
role is to make it harder to solve the problem for those owning a bad basis. Very roughly,
the idea is that, given a challenge point x ∈ Rn, with the short basis vectors we can take
small steps from it and look around for the solution among nearby points. Although it
may take some time to find the best one, we are guaranteed that, if we take one step at
a time in each direction, we will soon find the solution (which, remember, is guaranteed
to be close). Instead, if we have long vectors, every time we use one we have to make a
big leap in one direction.

In other words, the advantage of having the good basis lies in knowing the step size of
the lattice. This allow to take steps of considerate size, with the guarantee that, if we do
not skip any steps, we will stumble upon the solution of BDD(L,x). On the other hand,
the parties holding the bad basis can only take huge jumps and may have a hard time
pinpointing the right point.

Earlier, we mentioned that the role of the re-scaling is akin to that of the orthogonality.
Let us now explain why. Let us consider a basis of that kind, such as B = {b1 =

(
√

3
2
, 1

2
),b2 = (1

2
,
√

3
2

)}. This is just the canonical basis tilted 45 degrees counter-clockwise.
If we wrote down the minimum problem to solve given a challenge point, we would expect
it to be pretty similar to the one with the bad basis we saw in Example 1.3.3, with the
equations not being independent; thus, difficult to solve.

In particular, for x = (3
7
, 9

10
), we would be looking for min y, z ∈ R and k, j ∈ Z such that
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they are solution of: {
3
7

+ y =
√

3
2
k + 1

2
j

9
10

+ z = 1
2
k +

√
3

2
j

However, since if we know that B is orthogonal, we can transform it into a re-scaled
version of the canonical basis. It is beyond the scope of this work to explain how it
can be done from a practical point of view; it suffices to say that it is possible to find a
rotation matrix U that allows to obtain B′ = {v′1,v′2}, which generates a new lattice L′.
U also allows to obtain a rotated version x′ of the challenge point as well.

Then, it is possible to solve the problem BDD(L′,x′), obtaining a solution v′. Notice
that v′ is not the solution to BDD(L,x), but we can easily rotate it back to find the
solution v to the original problem!

Remark 1.3.3. One may be tempted to think that v′ would be the solution to BDD(L,x),
but that is not the case. The reason is that span(B′) 6= span(B), and thus the two lattices
differ.

As a final note, let us stop to consider whether using a general orthogonal basis over a
more specific re-scaled canonical basis has any advantage. It seems that this is not the
case, because using a basis of the former kind does not make the opponent’s job any
harder, but only increases the computational cost for the honest party. For this reason,
we argue that there is no good reason to use a random orthogonal basis instead of a
stretched canonical one.

Also, notice how having a generic orthogonal basis is not enough for an adversary to
break the problem. In fact, if it is orthogonal, but its vectors are long, the problem is
still somewhat hard because of the previous observations on vector shortness.

So finally, we are ready to provide a better definition of a good basis, which is what we
will rely on from here onwards.

Definition 1.3.6 (Good basis, final). A good basis for a lattice L is any orthogonal
set of vectors that generates L, as long as all other (“bad”) bases are made of longer and
poorly orthogonal vectors.

Let us stop to notice that, since we require all other bases to be worse than the good one,
a good basis is essentially unique! That is, there is only one good basis per lattice (without
accounting for flips), and its vectors encode the lattice step size in each dimension. In
other words, the good basis is the shortest one possible. This is unlike vector spaces, in
which the continuous space would make it impossible to define a shortest basis.

Good and bad bases in cryptography

Up to now, it may not be clear how these hard problems and lattice bases we have
discussed so far could be used for cryptographic applications. We defer an in-depth
discussion of the matter to Section 2, but we would like to give at least an idea here.
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In public-key cryptography, schemes rely on two different keys: one is public and shared
with the world, and the other is kept secret. The public key is used to encrypt data,
while the secret one allows to decrypt. Similarly, in a signature setting, the public key
is needed to verify a signature, while the act of signing can only be performed with the
secret key.

These public-key schemes rely on some trapdoor function: a function that is easy to
compute in one direction (i.e. data encryption/signature verification) but difficult to
invert unless one has some special information. The special information consists in the
trapdoor, and is represented by the secret key.

For schemes that operate on lattices, something similar happens. In fact, we have seen
that it may be easy to create an instance of some hard problem (using any basis of
the lattice), for example of the Bounded Distance Decoding Problem, but that the only
efficient way of solving it is by having a good basis of the lattice. Thus, one can think of
the good basis as being a trapdoor (i.e. a secret key), while one of the the bad basis as a
public key.

1.3.4 Obtaining a good basis from a random one

One immediate question springs to mind: is it easy to obtain a “good” basis starting
from an arbitrary, possibly “bad”, one? Clearly, the answer must be no, otherwise all the
problems we have defined as hard up to now would become easy. In fact, if that were the
case, one could start from any basis, obtain a “good” one, and then solve the problem
instance at hand.

For euclidean spaces, the Gram-Schmidt orthogonalization process [Wik19a] allows to
build an orthogonal basis of the space starting from a random one. Optionally, the
obtained basis can also be normalized. Is it not possible to devise a very similar algorithm
for lattice bases? The answer is no.

The point is that to obtain a good basis one must essentially solve a Shortest Vector Prob-
lem. In fact, the two problems are tightly linked. As we have already remarked, a good
basis is unique, and it contains the step size in each of the possible lattice “directions”.
However, obtaining the step size is indeed a Shortest Vector Problem.

There is an algorithm that allows to build a (quasi) good basis for lattices, which uses
the same ideas of the Gram-Schmidt process, but it only runs in (sub-)exponential time.
This is the Lenstra–Lenstra–Lovász algorithm [Wik19b].

1.4 An example scheme: NTRUEncrypt

Here we present an example scheme on lattices, the NTRUEncrypt public-key cryptosys-
tem [HPS98]. It is relatively new, as it was first developed (and patented) around 1996.
However, it has been constantly improved throughout the last decades, and it is now fully
accepted to IEEE P1363 and X9.98 standards.

It is possibly the only scheme on lattices that is currently used in real world scenarios.
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In fact, given its speed and low memory usage, it is ideal for mobile devices and smart
cards. In fact, the scheme works on polynomials

a = a0 + a1X + a2X
2 + · · ·+ aN−2X

N−2 + aN−1X
N−1

in the quotient ring Z[X]/(XN − 1) and only involves simple polynomial multiplications,
which is significantly faster [YB17] than other asymmetric encryption schemes such as
RSA, ElGamal or elliptic curves.

NTRU is parametrized by three integer parameters (N, p, q): the first representing the
maximum degree N − 1 of the polynomials, the second being a small modulus and the
third a large modulus. The constraints are that N is prime, p is smaller than q, and
p and q are co-prime. The scheme seems now secure to all known sorts of attacks and
efficient enough to be deployed mainstream.

1.4.1 Key generation

Being an asymmetric scheme, both a private and a public key are generated.

We start with two polynomials f ,g with degree at most N − 1 and with coefficients in
{−1, 0, 1}. Additionally, f must also be invertible modulo p and modulo q, meaning that
there must exist polynomials fp, fq such that f · fp = 1 mod p and f · fq = 1 mod q. In
this setting, the mod operation acts on the coefficients of the polynomials.

Then, all the polynomials f , fp, fq,g are kept secret and make up the secret key. The
public key h, on the other hand, is generated by computing

h = p fq · g mod q

1.4.2 Encryption

To send a message, it must first be encoded as a polynomial m with coefficients in
{−1, 0, 1}. This corresponds to finding the binary or ternary representation of the mes-
sage. Then, a random polynomial r with coefficients in {−1, 0, 1} is chosen with the role
of obscuring the message.

Using the public key h and the noise r, the ciphertext is computed as such:

e = r · h + m mod q

which is now safe to be sent on a public channel. Of course, care must be taken in
keeping the error factor r secret as well. Otherwise, an adversary could easily compute
the product r · h and recover the cleartext secret message.

1.4.3 Decryption

To decrypt, the encrypted message e is first multiplied by the secret polynomial f :
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a = f · e mod q

= f · (r · h + m) mod q

= f · (r · p fq · g + m) mod q

= p r · g + f ·m mod q

because f · fq = 1 mod q.

Next, we reduce the polynomial a modulo p, exploiting the fact that p r · g = 0 mod p:

b = a mod p = f ·m mod p

At this point, the original message m can be recovered using the secret polynomial fp
and the fact that it is the inverse of f modulo p:

c = fp · b = fp · f ·m mod p = m mod p

1.5 Modern hard problems

Modern lattice cryptography is based on hard problems called Short Integer Solution
(SIS) and Learning With Errors (LWE). These are much more mathematically-versed
than the “traditional” hard problems we have covered in previous sections, but still rely
on their hardness.

1.5.1 The Short Integer Solution Problem

The Short Integer Solution problem serves as foundation for most modern lattice-based
digital signature schemes, which is the main topic of this thesis. However, it has also
been used to build collision-resistant hash functions and identification schemes. It has
not been used for encryption, though, for which the Learning With Errors problem (see
1.5.2) is more versed.

Informally, the problem asks, given many random elements of Zq, to find a “short” non-
trivial integer combination of them that sums to zero. More formally,

Definition 1.5.1 (Short Integer Solution (SISn,q,β,m)). Given a matrix A ∈ Zn×mq

(or, which is the same, m random vectors ai ∈ Znq ), find a non-zero integer vector z ∈ Zm
satisfying ||z|| ≤ β such that

Az =
n∑
i

ai · zi = 0 ∈ Znq

Remark 1.5.1. Notice how the problem becomes easy if the constraint on the norm
||z|| ≤ β is removed. In fact, the equation Az = 0 alone can be solved efficiently via
Gaussian elimination for linear systems.

Remark 1.5.2. Depending on the tightness of the bound β, the solution may not be
unique. For example, if z is a solution, with ||z|| ≤ β

2
, then 2 · z is a solution as well.
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1.5.1.1 On the choice of parameters

The problem is defined with respect to four different parameters: n, q, β,m. In the
following remarks we shall briefly discuss their roles and relationships.

Remark 1.5.3 (On parameters n and m). If we can solve the problem for a matrix
A, then we can do so for any extension [A | A′]. In fact, it is enough to pad the solution
vector with zeros to obtain a solution for the extended matrix, as this does not change its
norm.

The consequence is that we may ignore columns ai as wished. This means that a SIS
instance can only get easier as m increases, while gets more difficult as n increases.

Proposition 1.5.1 (On parameter β and solution existance). If β ≥
√
m̄ and

m ≥ m̄, with m̄ the smallest integer greater than n log q (i.e. dn log qe if not integer,
itself incremented by one otherwise), then the instance SISn,q,β,m is guaranteed to admit
a solution.

Proof. Suppose m = m̄ (this does not affect generality, as the argument works for any
greater m because of the previous remark).

Now notice that there are more than qn vectors of the form {0, 1}m, because

|{0, 1}m| > |{0, 1}n log q| = qn.

Then there must be two distinct x,x′ ∈ Zm such that Ax = Ax′. Their difference x− x′

belongs to {0,±1}m and is thus a solution of norm at most β.

Remark 1.5.4. It is interesting to notice how the argument of the proof of proposition
1.5.1 suggests that the SIS problem may support the construction of collision-resistant
hash functions, if we assume its hardness. In fact, considering the function family {fA :
{0, 1}m → Znq }, a collision for fA would immediately yield a solution for the SIS problem
on A. Moreover, given the hardness of the problem, these functions would also be one-way,
thus satisfying the definition of hash functions.

It is beyond the scope of this work to investigate how this construction could be done:
more information can be found in [PR06].

Finally, it is worth spending some words on the hardness of the problem. In fact, for what
choice of parameters is the Short Integer Solution problem hard? The main parameter
that controls the hardness of the problem is n, but q also plays a role as stated in the
next result.

Proposition 1.5.2. If q ≥ βnδ, for any integer δ > 0, then the corresponding SIS
instance is hard. On the other hand, for q < β it becomes trivial [MP13].

Proof. On the ease of solution if q < β, notice that, if β is allowed to be q, then

z = (q, 0, · · · , 0)

is a valid (and trivial) solution.

For the proof of hardness with q ≥ βnδ, see [MP13].
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Example 1.5.1. Let us consider Z6, with samples a0 = (3), a1 = (2), a2 = (5). Of
course, this is by no means a cryptographic setting, but rather a toy example to better
understand the problem.

By proposition 1.5.1 and with our current parameters, we have

m̄ = n log q = 1 log 6 ≈ 2.5.

Let us go through the conditions that guarantee the existence of a solution:

• m ≥ m̄: we provided three samples a0, a1 and a2, so this is trivially satisfied;

• β ≥
√
m̄: since 1 <

√
m̄ < 2, we need to set β ≥ 2.

Let us set it to its tightest value then: β = 2.

The (only) solution to this instance of the SIS problem is

z = (2, 0, 0),

for which 2 = ||z|| ≤ β = 2 and Az = (3, 2, 5)T (2, 0, 0) = 6 = 0 mod 6.

1.5.1.2 SIS on lattices

What is most important is that the Short Integer Solution problem can be seen as a Short
Vector Problem on a certain family of lattices. These are called q-ary m-dimensional
lattices, and they are defined as such:

L⊥(A) = {z ∈ Zm : Az = 0 mod q}

Notice how the space L⊥(A) is basically the solution space of SIS on the matrix A. They
are called q-ary because L⊥(A) contains a copy of qZm (since any element in qZm is
congruent to 0 modulo q), and are m-dimensional because they contain the vectors q · ei
for each i ∈ [1, · · · ,m] (since q · ei = 0 mod q), where {ei} is the standard basis of Zm.

The link between the Short Integer Solution problem and the Minimum distance one
allows to reduce the former to the more classical hard problems, as stated in the next
theorem. This is important as it means we only have to rely on the hardness of the
Shortest Vector Problem, while still using the more mathematical-versed and easily im-
plementable SIS problem.

Theorem 1.5.1. For any m,β = poly(n) and prime q ≥ β · ω(
√
n log n), the average-

case problem SISn,q,β,m is as hard as approximating the Shortest Independent Vectors and
Decisional Shortest Vector problems.

1.5.1.3 Normal form

It is possible to achieve a (possibly) significant optimization in terms of size of the matrix
A at no cost in cryptographic hardness. The only assumption we need to make is that it
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must be possible to rewrite A as A = [A1 | A2], with A1 ∈ Zn×n being invertible. This
does not affect generality, as from remark 1.5.3 we know that columns can be ignored
(also, re-ordering the columns does not affect the norm of the solution).

Then, we replace A with

A′ = A−1
1 · A = [In | Ā = A−1

1 A2]

The matrix In is then implicit, and does not need to be distributed. In fact, the instance
of the SIS problem is fully embedded into Ā, which is of size (m− n)× n. What is most
important is that this transformation does not affect the SIS solutions, as we shall shortly
prove. Moreover, notice that Ā is uniformly random, as A2 is uniform and independent
of A−1

1 .

Proposition 1.5.3. A and A′ have exactly the same set of SIS solutions.

Proof. Taking advantage of the fact that A1 is invertible,

Az = 0 mod q ⇔ A−1
1 · Az = 0 mod q ⇔ A′z = 0 mod q

1.5.1.4 Inhomogeneous SIS problem

The formulation of the Short Integer Solution problem we have given so far is also called
homogeneous, being in the form

∑n
i ai · zi = 0. However, it can also be stated in the

inhomogeneous form, which is more generic. In this case, we are not looking for an integer
combination of the ai that sums to zero. Instead, the examples are required to sum to
some given non-null element of Znq .

Definition 1.5.2 (Inhomogeneous Short Integer Solution (ISISn,q,β,m)). Given m
random vectors ai ∈ Znq composing the matrix A, and some u ∈ Znq , find a non-zero
integer vector z ∈ Zm satisfying ||z|| ≤ β such that

Az =
n∑
i

ai · zi = u mod q

This formulation will be helpful in Chapter 2, when talking about trapdoor functions. In
fact, we will present a trapdoor for the inhomogeneheous SIS problem.

1.5.2 The Learning With Errors Problem

While the SIS problem is the foundation for signatures, the Learning With Errors problem
has the same role for encryption. Informally, the problem asks to recover a secret vector
given many random noisy inner products involving it.

The idea of the problem is very similar to the Bounded Distance Decoding one. However,
while in the BDD problem we started with a lattice point and perturbed it with some
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noise, here we compute a lattice point having some randomness, and then perturb it with
noise. From a mathematical point of view, though, one can imagine them being pretty
much the same.

Definition 1.5.3 (Learning With Errors (LWE) instance). Starting from a secret
vector s ∈ Znq and choosing at random a ∈ Znq , e← χ (with χ a distribution over Z, most
often Gaussian), the corresponding Learning With Errors instance is

(a, b) = (a, s · a + e mod q)

There are two versions of the LWE problem: search, which consists in recovering the secret
vector s given some LWE samples; decision, which consists in distinguishing between real
LWE instances and uniformly random ones. Both of them are parametrized by n, q, χ,m,
although m is of secondary importance as for SIS.

Definition 1.5.4 (Search-LWEn,q,χ,m). Given m independent Learning With Errors
instances (ai, bi) ∈ Znq × Zq for a uniformly random secret s ∈ Znq (fixed for all samples),
find s.

Definition 1.5.5 (Decision-LWEn,q,χ,m). Given m independent samples (ai, bi) ∈ Znq ×
Zq, with each being either a LWE instance or a uniformly sampled from Znq × Zq, distin-
guish which is the case.

The samples can be more conveniently arranged in a matrix A ∈ Zn×mq and vectors b, e,
so that the problem may be rewritten in vector notation:

b = As + e mod q

Remark 1.5.5. Both versions of the problem become easy if the noise is removed. In
fact, they can easily be solved via Gaussian elimination (although, in the Decision version,
it is likely that no solution will exist).

Remark 1.5.6. The solution to a given LWE instance is always unique. This is opposite
to what happens for SIS.

Search-LWE can be seen as a Bounded Distance Decoding problem on a certain family of
q-ary m-dimensional lattices. In fact, for samples in matrix A, the vector b is relatively
close to exactly one vector in the lattice

L(A) = {Ats mod q : s ∈ Znq }

Similarly to SIS, the hardness of Learning With Errors can be reduced to that of the
Shortest Vector Problem.

Theorem 1.5.2. For any m = poly(n), q ≤ 2poly(n) and discretized Gaussian distribution
χ, solving the decision-LWEn,q,χ,m is at least as hard as quantumly solving GapSVPγ and
SIVPγ on arbitrary n-dimensional lattices, for some γ = O(n) [Pei09].

The theorem is proved with a quantum polynomial-time reduction, hence transforming
any algorithm (classical or quantum, regardless) for solving LWE into a quantum algo-
rithm for lattice problems. To date, there are no known algorithms for GavSVP and
SIVP that perform significantly better than classical ones.

However desirable a fully classical proof would be, it has not been devised yet. There has
been work in that direction, but it only partially achieved such a goal.
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Chapter 2

Trapdoor Functions on Lattices

Figure 2.1: A trapdoor function.

Informally speaking, a trapdoor function
is a function easy to compute in one direc-
tion, but very difficult to invert, as illus-
trated in Figure 2.1. However, the inver-
sion becomes easy when one knows some
particular information.

The most straightforward analogy is that
of a padlock: it is very easy to lock it,
but very difficult to open it unless one has
the key. In this concrete example, the key
corresponds to the trapdoor.

Trapdoor functions are the foundation of
asymmetric cryptography: the idea is that
an instance of some hard problem can be
shared publicly, while the corresponding
information to efficiently solve it (i.e. the trapdoor) is kept secret. Then, the public
information can be used to encrypt some data, while the secret key is needed to decrypt
it. In a signature scheme, the secret key is needed to sign the data, while the public key
is used to verify the signature.

In our work, we are concerned with trapdoor functions over lattices. It is worth mention-
ing that, even if our work is centered around homomorphic schemes, trapdoor functions
are detached from the homomorphic notion. In fact, the homomorphic requirement is a
feature that is put on top of the encryption/signature scheme, but does not have anything
to do with trapdoor functions themselves.

The first trapdoor constructions on lattices are relatively old and date as back as [Ajt96]
and [Ajt99]. However, we will stick to the more modern formulations given by [MP12],
which is mathematically and computationally more versed.
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2.1 Trapdoor for Learning With Errors

Let us consider some integer q = poly(n), with n being the main security parameter, and
the function

hA(s, e) = stA+ et mod q.

Notice how the function hA has a straightforward relationship with the Learning With
Errors problem in vector form, that we have already defined as a hard problem in Section
1.5.2.

What we will see is that, by carefully crafting the matrix A that parametrizes the function
(i.e. parametrizes the LWE instance at hand), it is possible to generate another matrix R
that makes solving the problem easy. In other words, if we craft the problem in a certain
way, then we also know how to solve it efficiently.

Of course, only the party who generated the problem in the first place can derive the
needed information to solve it. To any other party, the matrix A thus generated, even
if carefully crafted, will not have any particular structure. That means that any other
party will not be able to infer how to easily solve the problem by just seeing the public
information.

Remark 2.1.1. We will see that the trapdoor definition we are going to give is not only
applicable to LWE, but can also be adapted to SIS problems.

2.1.1 G-trapdoors

The secret information that makes up the trapdoor depends on the specific instance of
the problem A. Moreover, it relies on the existence of a so-called primitive matrix G, the
formal definition and discussion of which is deferred to Section 2.3. In fact, we prefer to
give an overview of the trapdoor workings first, and dive into the detailed inner workings
later. For now, it is enough to think of G as being a full rank matrix for which it exists
an algorithm that can invert its transformation.

Definition 2.1.1 (G-trapdoor for A). Let A ∈ Zn×mq and G ∈ Zn×wq a primitive matrix,

with m ≥ ω ≥ n. A G-trapdoor for A is a matrix T ∈ Z(m−ω)×ω
q such that A

[
T
I

]
= HG

where H ∈ Zn×n is invertible (called the label or tag of the trapdoor).
The quality of the trapdoor is measured by its largest singular value s1(T ).

As already remarked, this notion of trapdoor is new. Previously, a trapdoor for lattices
would be made of a short basis of L⊥(A), but that method was deemed slow and com-
plicated. It can be shown that this (modern) trapdoor definition also allows to retrieve
a short basis of L⊥(A). This proves that the G-trapdoor definition by [MP12] is at least
as good as the old idea (yet, also significantly more powerful).

Remark 2.1.2. If T is a trapdoor for A, then it can be used to build a trapdoor for any
extension of [A | B] by padding T with zero rows. This leaves s1(T ) unchanged.
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Remark 2.1.3. While the tag H does not seem to play a primary role in the definition
of a G-trapdoor, it is actually fundamental. In fact, as we will see in Section 2.4, the
trapdoor is built starting from H, not from T . In some sense, one can think of T as the
trapdoor, while of H as the seed that generates it.

For now, suppose to have a lattice defined by A alongside with its trapdoor (we will
cover how trapdoors are generated in Section 2.4). Also, suppose that, while the function
hA(s, e) = stA+et is difficult to invert, the function hG(s, e) = stG+et is easy instead. In
other words, suppose that it exists an oracle for the inversion of hG. This last hypothesis
may seem arbitrary, but Section 2.3 provides an example of a matrix G for which this
assumption holds.

To invert an instance of the Learning With Errors problem, the idea is to use the G-
trapdoor T to transform the LWE instance based on A on an instance based on G, and
then rely on the G-oracle to invert this last instance and recover the secret values s and
e.

Let us now see how the procedure works in detail.

Start from a lattice point bt = hA(s, e) = stA+ et mod q, where s ∈ Zn and e ∈ Zm.
Then define b̂ as:

b̂t = bt
[
T
I

]
= (stA+ et)

[
T
I

]
= stA

[
T
I

]
+ et

[
T
I

]
︸ ︷︷ ︸

error

=

= stHG+ êt = ŝtG+ êt =

= hG(̂s, ê)

(2.1)

This allowed us to turn an hA instance into an hG instance! At this point, we can call
the G-oracle on b̂ to obtain the values (̂s, ê) = O(b̂).

Finally, the original secret and error values can be recovered as

st = H−tŝ

et = bt − stA.

Let us stop to notice that the algorithm relied on the ability to discard the error value
ê in Equation 2.1, thus leaving the term ŝtG alone. This can be done as long as there
is a systematic and efficient way to get rid of the error term. This is the case as long
as ê ∈ P1/2(B−t). There is a very nice algorithm to achieve this goal, based on Babai’s
Nearest Hyperplane Algorithm [Kap04].

What we still have not tackled is how the oracle O(b̂) works, i.e. how it is possible to
invert the transformation G. We will deal with this matter in Section 2.3.

In the end, then, the role of the trapdoor is to allow reducing an LWE instance on A,
which is difficult, to an LWE instance on G, for which there are computationally efficient
methods. Finally, notice how anybody could solve the instance on G - the role of the
trapdoor is just to get to it.
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2.2 Trapdoor for Short Integer Solution

Let us now see how the G-trapdoor notion can be used as a trapdoor function for SIS
problem instances as well. We will consider the more generic case of the Inhomogeneous-
Short Integer Solution problem.

SamPre(A,u, T ) algorithm. The problem at hand is the following: given a lattice
point u ∈ Zn, find another element x ∈ Zm such that fA(x) = Ax = u mod q. This is
also referred to as preimage sampling.

First, we need to find an element z ∈ Zω such that

fG(z) = Gz = H−1(u− Ap) mod q

where p ∈ Zm is an apt perturbation vector with covariance matrix dependent on the
trapdoor T [SD18]. This is a linear system with no additional constraints and can be
solved efficiently.

Then, we define the vector x as

x = p +

[
T
I

]
z

which satisfies the equality Ax = u. In fact,

Ax = A

(
p +

[
T
I

]
z

)
= Ap + A

[
T
I

]
z =

= Ap +HGz = Ap +HH−1(u− Ap) = u

In the end, being able to craft a vector z as above and owning the G-trapdoor T for A
allows the inversion of an SIS instance over A.

Remark 2.2.1. Of course, the inversion of an instance of the homogeneous-SIS (i.e. the
case fA(x) = Ax = 0 mod q) stems directly from the discussion above. Setting u = 0
will leave everything else working the same.

2.3 Primitive matrices and inverting hG

The whole trapdoor construction we have built so far relies on the ability to efficiently
invert hG. In this section, we show how this can be done.

We will start by providing more details on the structure of the matrix G. In the pre-
vious sections, we had assumed (rather vaguely) that it must be possible to invert the
transformation of G. We will now show how this can be achieved.

Notice how we never requested G to be an invertible matrix. In fact, this is not needed:
we only need to be able to revert its action. This may seem odd at first, but makes
more sense if we think that G has the effect of re-constructing an integer given its binary
representation. With this in mind, it is clear that we do not need to find the explicit
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matrix inverse of G to invert its action: we simply need a (very simple!) algorithm to
extract the binary representation of an integer.

As we have seen, the matrix G is a pivot point for trapdoors both for LWE and SIS
problem instances. The requirement it must satisfy is to be primitive. Intuitively, one
can think of a matrix being primitive when full rank - i.e. when it generates the whole
space. We now provide precise definitions:

Definition 2.3.1 (Primitive vector). A vector g ∈ Zkq is primitive if its components
satisfy gcd(g1, · · · , gk, q) = 1.

Definition 2.3.2 (Primitive matrix). A matrix G ∈ Zn×mq is primitive if its columns
generate all of Znq . In other words, G is primitive if G · Zm = Zn.

Primitive matrices are particularly important because solving instances of the Learning
With Errors problems based on them (what we have referred to as ‘inverting the function
hG’) can be done efficiently. This is the core of the next important result, and we will
spend the rest of this section going through its proof.

Theorem 2.3.1 (Inversion of hG). For any integers q ≥ 2, n ≥ 1, k = dlog2 qe and
m = nk, there exists a primitive matrix G ∈ Zn×mq such that:

1. The lattice L⊥(G) has a known (short) basis S ∈ Zm×m, such that ||S|| ≤ max{
√

5,
√
k}.

2. Both G and S are sparse and thus require little storage capacity.

3. Inverting the function hG(s, e) = stG + et mod q can be performed in quasilinear
time O(n logc n) for any s ∈ Znq and e ∈ P1/2(q · S).

Proof. The proof is made of several steps. First, we show how to build the matrices G and
S; then we provide concrete instantiations of them for which we show how to efficiently
invert the function hG.

For this proof, set q = 2k an exact power of two.

Building G and S. Start with a primitive vector g ∈ Zkq . First, notice that, being

primitive, g defines a k-dimensional lattice L⊥(gt). The lattice is also full-rank because
Zk/L⊥(gt) is in bijection with the set {gtx mod q, x ∈ Zk} = Zq through the first
homomorphism theorem.

Denote with Sk ∈ Zk×k a basis of L⊥(gt). Being full-rank, that gives us | det(Sk)| = q.

The primitive vector g and the corresponding basis Sk are used to define the matrix G
and basis S as

G = In ⊗ gt ∈ Zn×nkq , S = In ⊗ Sk ∈ Znk×nk

G =


· · ·gt · · ·

· · ·gt · · ·
...

· · ·gt · · ·

 , S =


· · ·Sk · · ·

· · ·Sk · · ·
...

· · ·Sk · · ·


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In other words, G and S are built from the identity matrix of size n in which every
diagonal (scalar) entry is replaced with a copy of gt and Sk respectively, stretching the
dimensions accordingly. One consequence of this construction is that, being g primitive,
G is a primitive matrix.

Furthermore, notice how the inversion of hG(s, e) is easily parallelizable by performing
the same operations n times in parallel for hgt(s, e), since G simply consists of several
copies of gt. Thus, what is needed in the end is an algorithm for efficient inversion of
hgt(s, e). We will achieve this for a specific gt.

Concrete instantiations. Consider the primitive vector

gt = (1, 2, 4, · · · , 2k−1) ∈ Z1×k
q k = dlog2 qe

and notice how gtx ∈ Zq for a binary x ∈ {0, 1}k is just its integer representation.
Intuitively, that is what will make the inversion of ggt easy: the idea is that we only need
to find the binary representation of a number in Zk.

Then define the matrix Sk as

Sk =


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k

and remark that it is a basis of L⊥(gt) since gt · Sk = 0 mod q and det(Sk) = 2k = q.

Efficient inversion of hgt(s, e). We now get to the core of the proof. We have seen
that inverting hG reduces to inverting hgt because of how we have built G. Thus, we now
need to show how to invert hgt . Notice that the size of s needs to change accordingly,
depending on whether we are considering the case of g or of G. In fact, with g, s is a
scalar; while with G, s is a vector.

Suppose to be given the vector

bt = (b0, b1, · · · , bk−1) =

= s · gt + et = (s+ e0, 2s+ e1, · · · , 2k−1s+ ek−1) mod q,

where e ∈ Zk is a short error vector and s ∈ Zq is a secret scalar element. The goal is to
recover the integer s.

There is an iterative algorithm that works by recovering the binary digits s0, s1, · · · , sk−1 ∈
{0, 1} of s ∈ Zq, from the least to the most significant digit, in the following manner.

First, consider the least significant digit:

bk−1 = 2k−1s+ ek−1 =
q

2
(s0 s1 · · · sk−1) + ek−1 mod q

=
q

2
s0 + 2k(· · · ) + ek−1 mod q

=
q

2
s0 + ek−1 mod q
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because q
2
si = 0 mod q ∀i ≥ 1.

This last step may require some thought. It relies on the fact that the elements si are
actually the binary representation of s, so their position already encodes some power of
2. For example, s0 and s1, though being both bits, have different values. In fact,

s0 → s0 · 20

s1 → s1 · 21

...

sk−1 → sk−1 · 2k−1

so any digit si with i ≥ 1 has already a factor 2i. Multiplying that by q
2

= 2k−1 yields a
result that is multiple of 2k = q, thus being null modulo q.

Going forward with the algorithm, the next step is to determine whether bk−1 is closer
to 0 or to q

2
mod q. The noise ek−1 is irrelevant as long as it is within [− q

4
, q

4
), which is

a condition that needs to be met. This gives the value q
2
s0, from which it is trivial to

recover the bit s0.

Then, to recover the second digit s1, look at

bk−2 = 2k−2s+ ek−2 = 2k−1s1 + sk−2s0 + ek−2 mod q

and subtract sk−2s0 from it. Again, testing proximity to 0 or
q

2
will yield the value of s1.

A similar procedure can be iterated to recover all binary digits of s.

As already mentioned, this algorithms successfully recovers all the si elements as long as
e ∈ P1/2(q · Ik/2). This allows to efficiently invert the function hgt(s, e).

Remark 2.3.1. The algorithm above is a specialized version of the Babai’s Nearest Hy-
perplane Algorithm [Kap04].

Remark 2.3.2. Here we have set q = 2k, but it is possible to use a modulus q that is not
a power of two with slight adaptations. For details on arbitrary moduli, refer to [MP12].

2.4 On the practical construction of trapdoors

Up to now, we have shown how trapdoor functions work, but we have not provided any
methods to build them. In fact, we worked under the implicit hypothesis that, given a
matrix A instance of a lattice hard problem (SIS or LWE), it existed a G-trapdoor for
it that allowed easy resolution of the problem. We are now going to show how these
trapdoors can be generated, as detailed in [MP12].

The high-level idea is to define the trapdoor matrix T first, and then use that to generate
a lattice on which the trapdoor works as seen in previous sections.

Before starting, we need to state a result that will be needed throughout the construction.
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Proposition 2.4.1. Let A ∈ Zn×mq be an arbitrary matrix and S ∈ Zm×m be any basis of

L⊥(A). Then, for any unimodular matrix K ∈ Zm×m, we have that

K · L⊥(A) = L⊥(A ·K−1),

with K · S as a basis.

TrapGen(1n, 1m, q) algorithm. We now show how to generate a lattice together with
its trapdoor.

First, start from a random matrix Ā ∈ Zn×m̄q . Then, using the primitive matrix G ∈ Zn×ωq ,
define the semi-random matrix

A′ = [Ā | HG] ∈ Zn×mq ,

where m = m̄+ ω and H ∈ Zn×n is the desired trapdoor tag. H can be random as well.

To continue, draw another matrix T ∈ Zm̄×ω according to some distribution D and use
it to build the transformation matrix

K =

[
Im̄ T
0ω Im̄

]
∈ Zm×m.

We would like to apply K to L⊥(A′). Since K is unimodular and its inverse is

K−1 =

[
Im̄ −T
0ω Im̄

]
∈ Zm×m,

using the proposition above we have that K · L⊥(A′) = L⊥(A′ ·K−1). Finally, output the
result matrix A as

A = A ·K−1 = [Ā |HG− ĀT ] ∈ Zn×mq ,

which represents the lattice (i.e. the public key) on which the trapdoor T works.

Moreover, the distribution of such a built A is close to uniform as long as the distribution
of [Ā | 0] · K−1 = [Ā | − ĀT ] is such. This means that the above is a sound way of
generating a lattice instance alongside with its trapdoor.

2.5 Trapdoor functions on polynomial rings

This section extends the trapdoor notion we have given for integer-modulo rings to poly-
nomial rings drawing from [Ber+18]. This will be needed for the signature scheme based
on polynomial rings that will be described in Section 3.3.

We first need to define the polynomial ring-version of the Short Integer Solution problem
(Ring-SIS), which is the natural extension of the SIS problem. Throughout this section,
let us denote with R the ring Zq[X]/(Xd − 1), which consists of polynomials of degree
at most d− 1 where each coefficient is reduced modulo q. In our study, we will focus on
the case where d is a power of 2. More details on the mathematical background can be
found in [SD18].
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Definition 2.5.1 (Ring-SIS). Given a vector of polynomials a ∈ Rk (or, which is the
samek random polynomials ai ∈ R), find a non-zero integer vector z ∈ {0, 1}k such that

atz =
n∑
i

aizi = 0 ∈ R

We may then give the notion of trapdoor function over polynomial rings.

Definition 2.5.2 (G-trapdoor on rings). Let a ∈ Rm and g ∈ Rk with k = dlog2 qe,
m > k. A g-trapdoor for a is a matrix of small polynomials T ∈ R(m−k)×k such that

at
[
T
Ik

]
= hgt for an invertible element h ∈ R (referred to as the tag).

We remark that an instance analogous to that of integer moduli for the primitive vector
g is that of constant polynomials gt = (1, 2, 4, · · · , 2k−1) ∈ Rk.

Given this definition, it is easy to verify that the trapdoor for SIS already discussed keeps
working [Ber+18], as long as the sizes are properly adjusted.

In particular, to find an element x ∈ Rm such that fat(x) = atx = u, with u ∈ R, we
first need to find an element z ∈ Rm such that

fgt(z) = gtz = H−1(u− atp)

where p ∈ Rm is an apt perturbation vector with covariance matrix dependent on the
trapdoor T [SD18]. This is a linear system with no additional constraints and can be
solved efficiently.

Then, we define the vector x as

x = p +

[
T
I

]
z

which satisfies the equality atx = u. In fact,

atx = at
(

p +

[
T
I

]
z

)
= atp + at

[
T
I

]
z =

= atp + hgtz = atp + hh−1(u− atp) = u

which is the same result we had derived for G-trapdoors on the ring of integer moduli:
here as well, the g-trapdoor allows reducing a SIS-instance on a to a SIS-instance on g,
which is easily solvable.
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Chapter 3

Homomorphic Signatures

Imagine that Alice owns a large data set, over which she would like to perform some
computation. In a homomorphic signature scheme, Alice signs the data set with her
secret key and uploads the signed data to an untrusted server. The server then performs
the computation modeled by the function g to obtain the result y = g(x) over the signed
data.

Alongside the result y, the server also computes a signature σg,y certifying that y is
the correct result for g(x). The signature should be short - at any rate, it must be
independent of the size of x. Using Alice’s public verification key, anybody can verify the
tuple (g, y, σg,y) without having to retrieve all the data set x nor to run the computation
g(x) on their own again.

The signature σg,y is a homomorphic signature, where homomorphic has the same meaning
as the mathematical definition: ‘mapping of a mathematical structure into another one
in such a way that the result obtained by applying the operations to elements of the first
structure is mapped onto the result obtained by applying the corresponding operations
to their respective images in the second one’ [Mer]. In our case, the operations are
represented by the function f , and the mapping is from the matrices Ui ∈ Zn×nq to the
matrices Vi ∈ Zn×mq .

Notice how the very idea of homomorphic signatures challenges the basic security re-
quirements of traditional digital signatures. In fact, for a traditional signatures scheme
we require that it should be computationally infeasible to generate a valid signature for
a party without knowing that party’s private key. Here, we need to be able to generate
a valid signature on some data (i.e. results of computation, like g(x)) without knowing
the secret key. What we require, though, is that it must be computationally infeasible to
forge a valid signature σ′ for a result y′ 6= g(x). In other words, the security requirement
is that it must not be possible to cheat on the signature of the result : if the provided result
is validly signed, then it must be the correct result.

In the next sections we present the signature scheme devised by Gorbunov, Vaikun-
tanathan and Wichs [GVW15]. As already mentioned, it relies on the Short Integer
Solution hard problem on lattices. The scheme presents several limitations and possible
improvements, but it is also the first homomorphic signature scheme able to evaluate
arbitrary arithmetic circuits over signed data.
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We start with some basic definitions and then move on to the formal notions.

Definition 3.0.1. A signature scheme is said to be leveled homomorphic if it can only
evaluate circuits of fixed depth d over the signed data, with d being function of the security
parameter. In particular, each signature σi comes with a noise level βi: if, combining the
signatures into the result signature σ, the noise level grows to exceed a given threshold
β∗, then the signature σ is no longer guaranteed to be correct.

Definition 3.0.2. A signature scheme is said to be fully homomorphic if it supports
the evaluation of any arithmetic circuit (albeit possibly being of fixed size, i.e. leveled).
In other words, there is no limitation on the “richness” of the function to be evaluated,
although there may be on its complexity.

Let us remark that, to date, no (non-leveled) fully homomorphic signature scheme has
been devised yet. The state of the art still lies in leveled schemes, such as [GVW15]. On
the other hand, a great breakthrough was the invention of a fully homomorphic encryption
scheme by [Gen09].

3.1 The scheme on integers

The signature scheme on integers relies on the trapdoor function for the Short Integer
Solution problem. In this setup, signatures consist of matrices Vi ∈ Zn×mq , while the
“signature secrets” are matrices Ui ∈ Zm×mq with entries whose sizes are properly bounded
(recall that it is exactly this requirement on the magnitude of the solution that makes
SIS difficult to break). The SIS instance is encoded in a matrix A ∈ Zn×mq .

Throughout this section, let us denote with xi ∈ {0, 1} the bits to be signed and G ∈ Zn×mq

a primitive matrix. Let us also denote with g the function we would like to evaluate on
the data set {xi}, expressed as an arithmetic circuit (being a Turing complete language,
any function can be expressed as such).

We now detail the algorithms which make up the signature scheme.

• prms ← prmsGen(1λ, 1N). Gets the security parameter λ and the data-size
bound N . Generates the parameters n,m and q (all together referred to as prms).
The values should be set so that the corresponding SISn,q,β,m instance both is
difficult and admits solution. Also notice how the parameters define the message
space X .

Then, a set of matrices V1, · · · , VN ∈ Zn×mq is uniformly sampled.

• (pk, sk) ← KeyGen(1λ, prms). Here the public key pk and the secret key
sk are generated. With the methods detailed in Section 2.4, a matrix A ∈ Zn×mq

is generated together with the relative G-trapdoor T ∈ Z(m−k)×k. A will serve as
public verification key, while T as secret key.

• σ1, · · · , σN ← Signsk(x1, · · · , xN). The signature function is in the form

σi = fA,xi(Ui) = AUi + xiG = Vi
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and the trapdoor is used to retrieve the value of Ui ∈ Zm×mq by running it against
a given Vi − xG as described in Section 2.2. The matrix Ui is kept secret and can
only be obtained with knowledge of the trapdoor.

• σ∗ ← SignEvalprms(g, ((x1, σ1), · · · , (xN , σN))) Homomorphically computes the
signature σ∗ for the computation of g on the signed data set {(xi, σi)}. In our use
case, this is done by the cloud server acting on the Vi matrices. Refer to Section
3.1.2 for how the signature is homomorphically computed in practice.

• αg ← Processprms(g) Homomorphically computes the verification key αg for
function g from the public parameters. In our case, this is done by the user who
signed the data set acting on the Ui matrices. Refer to Section 3.1.2 for how the
key is homomorphically computed in practice.

• Verifypk(αg, y, σ) Verify that y really is the result of g(x1, · · · , xN) by checking
the signature σ against αg. In particular, it checks whether

fA,y(σ
∗) = Aσ∗ + yG

?
= αg

or, with matrix notation, whether

fA,y(U
∗) = AU∗ + yG

?
= V ∗

Notice how each individual bit xi requires a full matrix Ui to be signed (size n2), and
results in a matrix Vi as signature (size (n×m)2).

Remark 3.1.1. It is useful to think the Process algorithm as a “pre-processing” of the
function g. The complexity of this step depends on the circuit of g and can be significant.
On the other hand, Verify is very quick and its complexity does not depend on g.

The real verification routine requires both Process and Verify (sometimes referred to as
Verify∗), but we distinguish between the two as Process can be performed offline, prior
to seeing the result y. This allows to speed up the verification phase significantly!

Remark 3.1.2. We said that the matrices Vi are randomly sampled by prmsGen. How-
ever, we can relax this requirement. In fact, since the Vi are to all effects public parame-
ters, they can also be set once for all, for all users of the scheme. For example, they could
be embedded into the signature software. Then, each user retrieves the corresponding se-
cret Ui using their own trapdoor (which must be different for each of them, of course).
As we will see, Theorem 3.1.1 guarantees that there is no exploitable relationship between
a Vi and its corresponding Ui, so fixing the Vi does not affect security.

Evaluation correctness. Now we port the classical correctness requirement of digital
signatures in the homomorphic setting.

We require that for any choice of parameters prms, keys (pk, sk), message (x1, · · · , xN),
signatures (σ1, · · · , σN) and function g : XN → X , we have:

Verify∗pk(g, g(x1, · · · , xN), σ∗) = accept,

where σ∗ ← SignEvalprms(g, ((x1, σ1), · · · , (xN , σN))).
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3.1.1 Statistical indistinguishability

There is one last piece of the puzzle that is still missing, over which we have not paid
attention up to now. That is: what is the probability distribution of the Ui and Vi, and
do the trapdoor workings have some kind of predictable outcome?

In other words, since SIS is a hard problem, we know that it is not possible to infer
the matrices Ui if given only the corresponding Vi. However, does this still hold if we
know that the Ui were obtained through a trapdoor? Does the trapdoor give away any
information?

Furthermore, we have seen that to generate the matrix A that defines the SIS instance, we
start from its trapdoor T . For this reason, another concern is: does the A thus generated
look random? Or maybe it carries some information about the trapdoor?

We will now provide definitions that help to formalize these questions and provide im-
portant results that guarantee that our construction is sound.

Definition 3.1.1. For discrete random variables X, Y with support X ,Y respectively,
their statistical distance is

SD(X, Y ) =
1

2

∑
u∈X∪Y

|P(X = u)− P(Y = u)|.

Definition 3.1.2. Two ensembles of random variables X = {Xλ}, Y = {Yλ} are statis-

tically close, denoted by X
stat
≈ Y , if SD(X, Y ) is a negligible function of λ.

The next theorem is taken from [GVW15], but it has been an incremental result built
from different sources ([Ajt99; GPV08; AP11; MP12]).

Theorem 3.1.1. Given integers n ≥ 1, q ≥ 2, there exists some m∗ = m∗(n, q) =
O(n log q) and β = β(n, q) = O(n

√
log q) such that, for all m ≥ m∗, we have the statistical

indistinguishability requirements:

A
stat
≈ A′, (A, T, U, V )

stat
≈ (A, T, U ′, V ′)

where (A, T )← TrapGen(1n, 1m, q), A′ is uniformly sampled from Zm×nq and U ∈ Zn×nq

is uniformly sampled satisfying the constraint ||U ||∞ ≤ β, V = AU , V ′ is randomly
sampled from Zn×mq , U ′ ← SamPre(A, V ′, T ).

Statistical distances are negligible in n. Moreover, any U ′ ← SamPre(A, V ′, T ) always
satisfies AU ′ = V ′ and ||U ′||∞ ≤ β.

In other words, this important theorem states that we can be sure of two facts:

1. generating an instance A through TrapGen is not statistically different than pick-
ing one at random;

2. picking a random “signature secret” U and computing the corresponding “public
signature” V = AU is not statistically different than starting with a random public
signature V ′ and going backwards to its U ′ using the trapdoor T and SamPre.

Taken together, they imply that the signature scheme and the trapdoor function we have
built up to now are secure.
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3.1.2 Homomorphic operations

The algorithms SignEval and Process are responsible of processing the signatures Vi and
the ‘signatures secrets’ Ui. We now provide details on how exactly these manipulations
happen.

We consider the homomorphic evaluation of certain base functions that can be used to
build an arbitrary arithmetic circuit. These basic building blocks allow to evaluate any
function g.

As we remarked earlier, we must take care about the depth of the circuit we want to
evaluate, as the scheme is leveled. For this reason, in defining the basic operations, we
must keep in mind that each signature has some noise that propagates throughout the
processing and, at some point, may make the final signature incorrect.

Definition 3.1.3. The noise of a ‘signature secret’ Ui is βi = ||Ui||∞ ∈ R.

Each ‘signature secret’ Ui starts with some (low) noise βi. If the noise level β∗ of the result
U∗ exceeds some threshold (defined by prms), then the evaluation correctness as defined
in 3.1 needs not hold. This is the real limit on the set of functions whole evaluation is
supported by the signature scheme: the ones such that the noise level β∗ stays below the
threshold. Understanding the error-growth rate is thus central in the next discussion.

Let us now go through the basic operations definitions. For each of them, we provide the
required computation for algorithms SignEval and Process.

• Addition gate: g(x1, x2) = x1 + x2.

U∗ = U1 + U2 V ∗ = V1 + V2

The noise of the result is β∗ ≤ β1 + β2.

• Multiplication gate: g(x1, x2) = x1 · x2.

U∗ = x2 · U1 + U2 G
−1(V1) V ∗ = V2 ·G−1(V1)

The noise of the result is β∗ ≤ |x2|β1 + mβ2. Notice how the error growth is
asymmetric with respect to the xi values.

• Addition-with-constant gate: g(x) = x+ c, with c ∈ Zq.

U∗ = U1 V ∗ = V1 + c ·G

The noise of the result is β∗ = β1, resulting in no change from the start.

• Multiplication-by-constant gate: g(x) = x · c, with c ∈ Zq.

U∗ = c · U V ∗ = c · V

The noise of the result is β∗ = |c|β. Notice how this method requires a small c.
However, there is also an alternative way of computing this gate:

U∗ = U G−1(c ·G) V ∗ = V G−1(c ·G)
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With the noise of the result being β∗ = mβ, which is independent of the value of c.
The most fit gate instantiation can be chosen depending on which between |c| and
m is bigger to achieve the smallest error growth.

It is straightforward enough to check that, if the inputs Ui, Vi satisfy Vi = fA,xi(Ui), then
the homomorphic evaluation procedures described above ensure that fA,g(x1,··· ,xN )(U

∗) =
V ∗. The gates can be composed to build an arbitrary function g expressed as an arithmetic
circuit. The only real limitation is the noise growth.

3.2 A note on the hopes for Fully Homomorphic Sig-

natures

The main limitation of the current construction is that verifying the correctness of the
computation takes Alice roughly as much time as the computation of g(x) itself. However,
what she gains is that she does not have to store the data set long term, but can do only
with the signatures.

To us, this limitation makes intuitive sense, and it is worth comparing it with real life. In
fact, if one wants to judge the work of someone else, they cannot just look at it without
any preparatory work. Instead, they have to have spent (at least) a comparable amount
of time studying/learning the content to be able to evaluate the work.

For example, a good musician is required to evaluate the performance of Beethoven’s
Ninth Symphony by some orchestra. Notice how anybody with some musical knowledge
could evaluate whether what is being played makes sense (for instance, whether it actually
is the Ninth Symphony and not something else). On the other hand, evaluating the
perfection of performance is something entirely different and requires years of study in
the music field and in-depth knowledge of the particular symphony itself.

That is why it looks like hoping to devise a homomorphic scheme in which the verification
time is significantly shorter than the computation time would be against what is rightful
to hope. It may be easy to judge whether the result makes sense (for example, it is not a
letter if we expected an integer), but is difficult if we want to evaluate perfect correctness.

However, there is one more caveat. If Alice has to verify the result of the same function
g over two different data sets, then the verification cost is basically the same (amor-
tized verification). Again, this makes sense: when one is skilled enough to evaluate the
performance of the Ninth Symphony by the Berlin Philharmonic, they are also skilled
enough to evaluate the performance of the same piece by the Vienna Philharmonic, with-
out having to undergo any significant further work other than going and listening to the
performance.

So, although it does not seem feasible to devise a scheme that guarantees the correctness
of the result and in which the verification complexity is significantly less than the com-
putation complexity, not all hope for improvements is lost. In fact, it may be possible to
obtain a scheme in which verification is faster, but the correctness is only probabilistically
guaranteed.
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Back to our music analogy, we can imagine the evaluator listening to a handful of min-
utes of the Symphony and evaluate the whole performance from the little he has heard.
However, the orchestra has no idea at what time the evaluator will show up, and for how
long they will listen. Clearly, if the orchestra makes a mistake in those few minutes, the
performance is not perfect; on the other hand, if what they hear is flawless, then there is
some probability that the whole play is perfect.

Similarly, the scheme may be tweaked to only partially check the signature result, thus
assigning a probabilistic measure of correctness. As a rough example, we may think of
not computing the homomorphic transformations over the Ui matrices wholly, but only
calculating a few, randomly-placed entries. Then, if those entries are all correct, it is
very unlikely (and it quickly gets more so as the number of checked entries increases, of
course) that the result is wrong. After all, to cheat, the third party would need to guess
several numbers in Zq, each having 1/q likelihood of coming up!

Another idea would be for the music evaluator to delegate another person to check for
the quality of the performance, by giving them some precise and detailed features to look
for when hearing the play. In the homomorphic scheme, this may translate in looking
for some specific features in the result, some characteristics we know a priori that must
be in the result. For example, we may know that the result must be a prime number,
or must satisfy some constraint, or a relation with something much easier to check. In
other words, we may be able to reduce the correctness check to a few fundamental traits
that are very easy to check, but also provide some guarantee of correctness. This method
seems much harder to model, though.

We did not develop any of these ideas further in this work, but we believe they are
promising hints for further improvements.

3.3 The scheme on polynomial rings

Here, we show how to port the signature scheme from the integer-modulo rings Zq to
polynomial rings Zq[X]/(Xd − 1) using the notion of g-trapdoor over polynomial rings
defined in Section 2.5, drawing inspiration from a similar approach for homomorphic
encryption by [KGV16].

The core of the scheme is similar to the one on integers, with the fundamental difference
that the elementary units are not integers in Zq anymore, but rather polynomials of
degree at most d− 1 with coefficients in Zq. The reason for such an interest is to obtain
improvements in computation time and ability to sign more than one bit in a single shot.
An analysis of the improvements over the original scheme can be found in Section 3.3.2.

In this setup, signatures consist of vectors of polynomials v ∈ Rk, while the ‘signature
secrets’ consist of matrices Ui ∈ Zm×kq with entries of properly bounded magnitudes. In
this context, this means that the entries of Ui should have coefficients in the set {−1, 0, 1}.

Throughout this section, denote with xi ∈ R{−1,0,1} the polynomials to be signed, having
coefficients in {−1, 0, 1}, and with g ∈ Rk a primitive vector. Also, let g be the function
we would like to evaluate on the data set {xi}, expressed as an arithmetic circuit.
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We now go through the scheme algorithms.

• prms ← prmsGen(1λ, 1d). Gets the security parameter λ and the maximum
degree d, which effectively acts as data-size bound. Generates the parameters n,m
and q (prms). The values should be set so that the corresponding Ring−SISn,q,β,m
instance is difficult and admits solution. Here as well, the parameters define the
message space X .

Then, a set of vectors v1, · · · ,vN ∈ Rk is uniformly sampled.

• (pk, sk) ← KeyGen(1λ, prms). Generates the public key pk and the secret key
sk. With the methods detailed in Section 2.4, a vector a ∈ Rm is generated together
with the relative g-trapdoor T ∈ Z(m−k)×k. A will serve as public verification key,
while T as secret key.

• σ1, · · · , σN ← Signsk(x1, · · · , xN). The signature function is in the form

σi = fa,xi(Ui) = atUi + xi · g = vi

and the trapdoor is used to retrieve the value of Ui ∈ Rm×m by running it against
a given vi − xi · g as described in Section 2.5. Ui is kept secret and can only be
obtained with knowledge of the trapdoor.

• σ∗ ← SignEvalprms(g, ((x1, σ1), · · · , (xN , σN))) Homomorphically computes the
signature σ∗ for the computation of g on the signed data set {(xi, σi)}. See Section
3.3.1 for how this is computed in practice.

• αg ← Processprms(g) Homomorphically computes the verification key αg for
function g from prms. See Section 3.3.1 for how this is computed in practice.

• Verifypk(αg, y, σ) Verify that y really is the result of g(x1, · · · , xN) by checking
the signature σ against αg. In particular, it checks whether

fa,y(σ
∗) = atσ∗ + y · g ?

= αg

or, with matrix notation, whether

fa,y(U
∗) = atU∗ + y · g ?

= v∗

Remark 3.3.1. Since we are working with truncated polynomials, we must also ensure
that, when evaluating SignEval and Process, the output is still a polynomial of degree
at most d − 1, or verification correctness will not hold. Any function g whose output
would be a polynomial of higher degree is not an admissible function.

3.3.1 Homomorphic operations

Homomorphic operations for the algorithms SignEval and Process are quite similar to
what already given for the scheme on Zq. What is different is the noise growth (and the
fact that now x1, x2 ∈ R, of course). Recall that the norm infinity of a polynomial ||x||∞
is defined as its biggest coefficient.
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• Addition gate: g(x1, x2) = x1 + x2.

U∗ = U1 + U2 v∗ = v1 + v2

The noise of the result is β∗ ≤ β1 + β2.

• Multiplication gate: g(x1, x2) = x1 · x2.

U∗ = x2 · U1 + U2 g−1(v1) v∗ = v2 ·G−1(v1)

The noise of the result is β∗ ≤ ||x2||∞β1 +mβ2.

• Addition-with-constant gate: g(x) = x+ c, with c ∈ R.

U∗ = U v∗ = v + (x+ c) · g

The noise of the result is β∗ = β, resulting in no change.

• Multiplication-by-constant gate: g(x) = x · c, with c ∈ Zq.

U∗ = c · U v∗ = c · v

The noise of the result is β∗ = ||c||∞β. Here as well there is also an alternative way,
independent of a:

U∗ = U g−1(a · g) v∗ = v g−1(a · g)

With the noise of the result being β∗ = mβ.

3.3.2 Improvements over the original scheme

Moving the scheme from the integer moduli to polynomial rings yields several improve-
ments. In this section we go through the differences in the schemes and point out advan-
tages and disadvantages of the scheme on polynomial rings.

It may be helpful to keep in mind that ‘signatures secrets’, in this context, consist of
matrices of polynomials U ∈ Rm×k. One may also think about these as matrices of
vectors, i.e. having one extra dimension with respect to the scheme over Zq.

Signature capabilities. With the scheme over Zq, only single bits could be signed at a
time, requiring a full matrix of size n×m for each of them. Instead, with polynomials, it
is possible to sign a full polynomial of degree d in one shot, resulting in a vector v ∈ Rk.

A polynomial with coefficients in {−1, 0, 1} can be interpreted as a binary vector, which
in turn can be read as an integer. Thus, the ability to sign a polynomial results in the
ability to sign an integer. In particular, having it degree d− 1, it may be possible to sign
integers up to 2d − 1.

One may wonder how come that switching from integers to polynomials yields this big
advantage. Our intuition is that the reason lies in the polynomials being a richer, more
complex ring. A binary vector does not belong to Zq, so it makes sense that signing
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it with elements of Zq requires going through each component individually. Instead, a
binary vector does belong to R, and we may sign it wholly.

In other words, by enriching the ring we achieved the ability to sign binary vectors, which
are complex elements when viewed from the prospective of integers, but elementary in
the realm of polynomials.

Also, notice how any serious computation in the scheme over Zq would require first build-
ing the integers from the individual bits through homomorphic operations by evaluating
an arithmetic circuit. In other words, to just build an integer, one needs to homomor-
phically evaluate a function on the data set. This overhead is no longer present with
polynomials, that already encode full integers.

Error growth. The error grows more quickly in the scheme over polynomials. In fact,
since we must take care in always keeping below the maximum degree, we can get to the
maximum allowed noise quicker.

Indeed, this is a consequence of the ability of signing full integers (in their binary repre-
sentation). We do not have to build the integers through an arithmetic circuit, but we pay
the price of being allowed less homomorphic operations. From a practical point of view,
though, this way may be much more handy.

Computation complexity. Moving to polynomials yields differences for computation
complexity as well. The scheme on Zq essentialy involves several matrix multiplica-
tions. To date, the best algorithm for matrix multiplication is the (improved [VW14])
Coppersmith-Winograd algorithm and runs in O(n2.373), with n the size of the matrix.

The scheme on polynomials involves essentially the same operations, but the elementary
elements are not integers but rather polynomials. Using the Fast Fourier Transform
[YB17], it is possible to compute polynomial multiplication in O(d log d), with d the
degree, for an overall rough complexity O(kd log d) = O(k log2 q log d). This should be
comparable to the complexity of evaluating an arithmetic circuit to multiply two integers,
which is what we would need to do with the scheme on integers. So computation-wise,
we do not seem to be losing anything.

Signature size and parameter choice. The signature size is closely related to the
choice of parameters. For integer SIS, we have seen that hardness is closely related to the
parameters n and β. In our polynomial settings, parameters governing hardness are the
polynomial degree d and the size k of the vector a. We could not find anything in the
literature about the choice of parameters for Ring-SIS hardness, but it seems reasonable
to require that n ' dk.

Intuitively, this would mean that the hardness, that was previously embedded only in n,
can be spread out on two different sides: the polynomial degree and the vector size. Since
the requirement is on their product, this can also give some flexibility over optimization
for different scenarios.
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Chapter 4

Conclusions

Homomorphic signature schemes have received more and more attention in recent years
as the need and usage of cloud services expanded. As we have seen, these schemes allow
to delegate the computation on a data set to an untrusted server, with the guarantee
that the user will be able to tell whether the final result is correct or not. The way
this is achieved is by signing the data set, computing a result signature through apt
operations on the signatures, and then verifying the final signature. Let us also remark
that homomorphic signatures schemes have proven useful in other application domains
as well, such as electronic voting, smart grids and electronic health records [TDB].

In this work we covered the first scheme to provide full homomorphic signatures [GVW15],
i.e. allowing the computation of any function, as long as it can be expressed as an
arithmetic circuit of pre-defined depth. The scheme is based on lattices, which guarantees
strength even with respect to quantum adversaries, and lattice trapdoor functions. We
went through the supported homomorphic operations, and saw that they allow to model
any arithmetic circuit, as long as the signature noise does not exceed some threshold.

The scheme on Zq as we presented it, though, has several limitations and elements that
make it unpractical for real life applications. In fact, signatures can get very big, only
individual bits can be signed, and, most importantly, the verification time depends on
the function to be evaluated. In other words, verifying the correctness of a result may
require as much time as computing it in the first place. Although we did not provide
any concrete improvements in this direction, we proposed some ideas that could speed
up the verification process by relaxing the requirements to a probabilistic-guarantee on
the correctness.

We then showed how to achieve the ability to sign full integers (instead of single bits
only), by moving the scheme to a quotient ring R of polynomials with coefficients in Zq.
In this fashion, we lose some granularity, in the sense that we cannot operate on the
individual bits anymore, but we gain the advantage of working at a higher level.

Let us remark that the topic is pretty recent and there is still a lot of work to be done
before any homomorphic signature scheme may be implemented and released for main-
stream usage. In particular, further work can be done to improve the performance of the
scheme to sign whole integers and its storage requirements. Limiting the error growth is
another subject for future research that could yield significant benefits.
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Appendix: Mathematical references

Definition 4.0.1. A group is a set G together with an operation + such that (G,+)
satisfies the given properties:

• Closure: for all a, b ∈ G, it must hold that a+ b ∈ G;

• Associativity: for all a, b, c ∈ G, it must hold that (a+ b) + c = a+ (b+ c);

• Identity element existence: there exists an element e ∈ G such that, for all
a ∈ G, it holds that a+ e = e+ a = a;

• Inverse element existence: for all a ∈ G, there exists an element b ∈ G such
that a+ b = b+ a = e. This b is denoted with a−1.

Definition 4.0.2. Given a group (G,+), a subset H ⊂ G is a subgroup of G if the
restriction of the operation + to H × H is a group operation on H (i.e. satisfies the
operation properties).

Definition 4.0.3. A unimodular matrix is a square matrix with entries in Z having
determinant +1 or −1.

Definition 4.0.4. An optimization problem is the problem of finding the best solution
(minimum or maximum) from the set of all the possible solutions (where ‘possible’ means
that they satisfy some constraints).

Definition 4.0.5. An euclidean space is a vector space with a dot product defined over
its elements. For example, R with the standard dot product is an euclidean space.

Definition 4.0.6. Given a homomorphism f : G → H, the kernel of f (denoted with
ker(f)) is the subset of G consisting of all the elements of G that are mapped by f to the
identity element of H. That is,

Ker(f) = {g ∈ G : f(g) = eH}

Theorem 4.0.1 (First isomorphism theorem for groups). Let G and H be groups,
and f : G → H a homomorphism. Then the image of f is isomorphic to the quotient
group G/Ker(f).
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